Saturday, 29 July 2017

New Mode Time - MSK144, and Random MS

With propagation down, and the weather rather hit and miss, I thought i'd try my hand at something new.

To make things difficult for myself, I picked a little known datamode protocol - MSK144, and an underused band for which I have only a low, fixed azimuth beam - 6m.

And to ensure I really did have the hardest time possible, this mode is used for a difficult propagation path - Metero Scatter!

The principle behind meteor scatter is fairly straightforward. Everyday, thousands of minute particles of space dust, usually no larger than a grain of sand, collide with the earths atmosphere, and are burnt up by the protective layers above us. Those grains, while out in space, are Meteoroids. As they pass through the atmosphere and burn up, they become Meteors. Should any part of it survive its encounter and reach the earths surface (which would need to have been a rather big bit of rock!) the remains are Meteorites. On any clear night from a suitably dark location, you can see a few random meteors. Those of you of a Disney fairytale princess persuasion may wish upon these shooting, or 'falling' stars - those with a hundred watts or more of throbbing RF and suitable software can make contact over them!

As the meteor burns up, it leaves behind it a trail of ionized particles. It is against this trail, a fleeting moment lasting from a few tenths of a second to a handful of seconds for a big, pebble sized meteor (which visually would produce a fireball or 'bollide') that we fling our radio messages, hoping to scatter enough signal from the trail to reach our partner station.

At certain times of the year though, the earth passes through streams of dust left behind by the passage of comets through the solar system. At these times, there is a marked increase in the number of meteors, and these are known as Meteor Showers. As with any event that affects propagation, these bring the latent operators out of the woodwork. However, the next shower, the Perseids, is several weeks away.

At times like this, you either set up a 'sked' with a particular station, or call CQ to try and make a random QSO...

As you can imagine, A random MS QSO is hard work! Your facing a combination of limited beamwidth (the same trouble that we have photographing meteors - your limited lens field of view means the meteor you see with your eyes is usually not in the cameras view!), rare and fleeting propagation, and few, if sometimes indeed any, other stations using the same mode and same frequency.

But, there are ways around! And thanks to the internet and fast CPUs, its a bit easier! We can announce on dedicated chat forums that we are calling, there are strict rules and message formats, and there are modulation protocols that run fast messages to increase the chance of a usable reflection. In the old days, MS was done by high speed morse! Now, its done using fast data modes such as MSK144, JT6M and FSK441.

But, despite all that, a random MS QSO is still a challenge! To state how much of a challenge, well, Ive probably spent 50h on it in the past few days, transmitting for maybe 2h total key-down time, and ive made two contacts!

The screenshot above shows a meteor 'ping'. The two halves of the window are 15 seconds long, and my transmit slot was 15 seconds between them. In 30 seconds then, only a single brief meteor passed at the right altitude, and position, between my station and that of Jurgen DK4AN. But, it was enough!

Sometime in the previous five minutes or so, a meteor had also passed that point, during one of my 15s Tx slots. Its decaying trail lasted long enough to reflect enough of my MSK144 message to Jurgen. The meteor in the image above, reflected his reply!

The software Im using is Joe Taylor W1JT's WSJT-X v.1.7. Joe is the chap who brought us WSPR plus a host of other modes for weak signal or fleeting propagation use - JT65, WSPR, JT9, JT6M etc etc. A new mode from him FT8, is rapidly gaining popularity! My antenna in this case is a 3 el yagi for 6m at the low height of about 15ft, fixed in direction to 120 degrees (roughly SE), the radio my Alinco DX-70TH running 100W. I am also using the VHF/UHF chat room of ON4KST online, in order to help co-ordinate my effort with others!

Around five minutes later, the above meteor 'burst' occurred. This was probably a slightly bigger grain of dust, maybe about the size of a bit of gravel, and it seems to have burnt up in pulses, a bit like when you see a naked eye meteor that seems to blaze up a couple of times. During this burst, I copied DK4AN again, decoding his message a couple of times. Now, as you can see, the messages are very short and direct. No data is wasted. The format is strictly controlled to ensure the right messages are sent and theres no confusion. As it happens, the WSJT-X program allows you to select 'Auto Seq' which means once you choose to reply to a signal, the computer can do the rest!

This last screenshot shows the completed QSO. Over a period of about 15 minutes, enough meteors were in the right place at the right time to allow their fiery destruction to do good and reflect our messages. A final confirmation via the online chat once the QSO was complete was made, to say thanks to Jurgen for his patience.

So, if you've always thought that meteor scatter was a mode for those with 'big gun' money for huge antennas, expensive low noise GaAsFET preamps, big linear amps and costly dedicated reel to reel high speed morse tape recorders, think again, and perhaps give it a try. If your in an IO or JO square, send in the 2nd slot! (convention - South and East sending in 2nd slot, North and West sending 1st). You only need a modest station, and a lot of patience!

No comments: